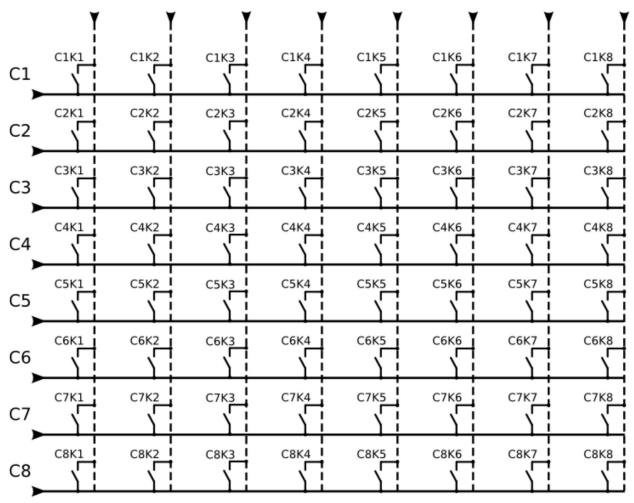
Relaismatrix x64 Technische Dokumentation

V1.3 28. Nov 2018

Inhaltsverzeichnis

1	Funktionsbeschreibung	3
	Technische Daten:	
	Stromversorgung	
	Ansteuerung	
	USB unter Linux	
	USB unter Windows	
	Kommunikation mit der Relaismatrix x64	
5	Konfiguration Master/Slave(_1,_2,_T1,_T2)	
	Konfiguration Master/Slave HW-Version 1.2 (1, 2, T1, T2)	
	Master-Slave Verbindung	
	Anhang A: Relaisplan	
9	Anhang B: Steckverbinder	11


Änderungsliste:

Miderarigs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
09.12.11	V1.0	Erstellung	M.Schneider
18.02.12	V1.1	Layout-Korrektur	M.Schneider
01.04.13	V1.2	Neue Befehle hinzugefügt	M.Schneider
28.11.18	V1.3	Master-Slave Kommunikation hinzugefügt	M.Schneider

1 Funktionsbeschreibung

Die Relaismatrix x64 besteht aus 64 Relais die als 8facher 1:8 Multiplexer (8 Kanäle C1-C8 mit jeweils 8 Relais K1-K8) verbunden sind. Es sind jeweils die Schließer von 8 Relais einseitig miteinander verbunden und zusammen mit den offenen Enden der Kontakte auf einen 96pol. DIN14612-C96-Steckverbinder geführt.

Durch externe Verbindung der einzelnen Schließer kann auch eine 8x8 Matrix realisiert werden. Angesteuert wird die Relaismatrix x64 über USB (virtueller COM-Port).

Die gestrichelten Linien sind Verbindungen, die nicht auf der Relaismatrix vorhanden sind.

Abbildung 1: Kontaktplan

Die Lage der Relais auf der Baugruppe ist im Anhang A: Relaisplan beschrieben.

2 Technische Daten:

Parameter	Wert	Einheit		
max. schaltbare Last AC	125V / 0,3	V/A		
max. schaltbare Last DC	30V / 1A	V/A		
max. Schaltspannung AC / DC	125 / 60	V/V		
max. Schaltstrom	1	Α		
max. Übergangswiderstand pro Relaiskontakt	100	mΩ		
min. elektrische Lebensdauer der Relaiskontakte	100.000	Schaltspiele		
mechanische Lebensdauer der Relaiskontakte	50.000.000	Schaltspiele		
Schaltzeit (nach Ende des Steuerbefehls)	< 10	ms		
min. Stromaufnahme	0.025 A			
max. Stromaufnahme	1.5	Α		
Abmessungen	160x100	mm		

3 Stromversorgung

Die Relaismatrix x64 kann über 2 Arten mit Strom versorgt werden:

- 5V von USB zum Testen bzw schnellen Inbetriebnahme genügen die 5V des USB.
 USB_Strombegrenzung beachten! JP1 gesteckt, externe 5V-Versorgung MUSS abgeschaltet sein.
- 2. 5V extern JP1 gezogen

4 Ansteuerung

Die Kommunikation mit der Relaismatrix x64 erfolgt über eine USB-Verbindung. Dadurch ist sie sehr flexibel unter Linux/Windows einsetzbar.

USB unter Linux

Seit Kernel 2.4 ist ein passender Treiber integriert. Dieser erstellt beim Einstecken der Relaismatrix x64 einen neuen Device "ttyUSBn" (z.B. ttyUSB0 als 1. Device) im Verzeichnis /dev. Dieser Device lässt sich wie ein normaler serieller Port ansprechen.

Als Alternative ist auch eine Ansteuerung mit libusb bzw. libftdi möglich. Dadurch läßt sich eine noch höhere Übertragungsgeschwindigkeit erreichen.

USB unter Windows

Für Windows wird ein Treiber von FTDI benötigt. Dieser erstellt beim Einstecken der Relaismatrix x64 einen virtuellen COM-Port. Die Nr. des COM-Ports lässt sich in der Systemsteuerung->Hardware Manager->Anschlüsse einstellen. Wenn der Port nicht zwischendurch anderweitig belegt wird, bekommt die Relaismatrix x64 immer den gleichen COM-Port zugewiesen.

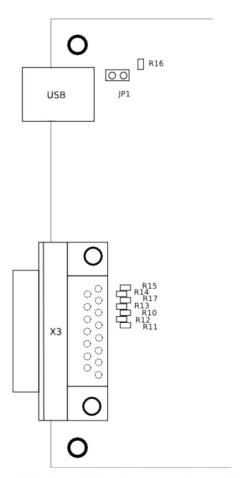
Kommunikation mit der Relaismatrix x64

Parameter für den COM-Port bzw ttyUSBn:

38400Bit/s , 8 Datenbits , No Parity, 1 Stopbit keine Flusskontrolle

Um ein Relais zu schalten wird eine Zeichenkette in der Form "CnKnCn1Kn2\r" über die serielle Schnittstelle an die Relaismatrix x64 gesendet ("\r" bedeutet dabei Carriage Return CR,ASCII-Code hex: 0x0D). Als Alternative zu \r ist auch \n möglich. Die Steuerung ist u.a. mit jedem Terminal(Hyperterminal, minicom) möglich. Bei Nutzung eines Terminals wird \n beim Drücken der ENTER-Taste gesendet.

Beispiel: "C1K1C2K3\r" schaltet das erste Relais K1 im ersten Kanal C1 und das 3. Relais K3 im zweiten Kanal C2

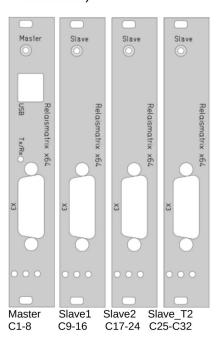

Zum Abschalten aller Relais wird einfach ein "\r" bzw "\n" gesendet.

Weitere Befehle:

Befehl	Beispielantwort	Beschreibung
*IDN?	'masla Relaismatrix x64 24 Channels, SW-Ver. 1.1, SNr: 10'	Identifizierung der Baugruppe mit Anzahl der erkannten Kanäle(C), Firmwareversion & Seriennummer
RELAIS:OPEN	-	Öffnet einzelne Relais z.B.: 'RELAIS:OPEN C1K1C8K2'
RELAIS:CLOSE	-	Schließt einzelne Relais z.B.: 'RELAIS:CLOSE C1K1C8K2'
RELAIS:STRING?	'C1K1C8K2\n'	Relaisstring der aktuell geschlossenen Relais

5 Konfiguration Master/Slave(_1,_2,_T1,_T2)

Die Konfiguration der verschiedenen Master bzw. Slave-Varianten wird durch die Bestückung folgender Widerstände bestimmt: R10,R11,R12,R13,R14,R16,R17,R18.

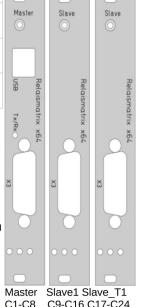


Variante	bestückte Widerstände			
Master (stand_alone)	R11,R16			
Master	R10,R13,R16			
Slave_1	R14,R17			
Slave_2	R13,R15			
Slave_T1	R12,R15			
Slave_T2	R12,R17			

Um eine Master-Platine einzeln als stand_alone zu betreiben kann als Alternative zum Wechseln der Widerstände auch der Blindstecker "Master stand_alone" für X3 genutzt werden.

Abbildung 2: Konfiguration Master/Slave

Abbildung 3: Konfiguration (Bsp. 4x Relaismatrix)


Anzahl	Konfiguration				
2	Master-Slave_T2				
3	Master-Slave1-Slave_T1				
4	Master-Slave1-Slave2- Slave_T2				
5	Master-Slave1-Slave2- Slave1-Slave_T1				
6	Master-Slave1-Slave2- Slave1-Slave2-Slave_T2				

Allgemein gilt:

-Bei ungerader Anzahl endet die Kette mit einer Slave_T1, bei gerader Anzahl mit einer Slave_T2 Karte.

- Slave1 und Slave2 Karten wechseln sich ab.

Abbildung 4: Konfiguration (Bsp. 3x Relaismatrix)

6 Konfiguration Master/Slave HW-Version 1.2 (_1,_2,_T1,_T2)

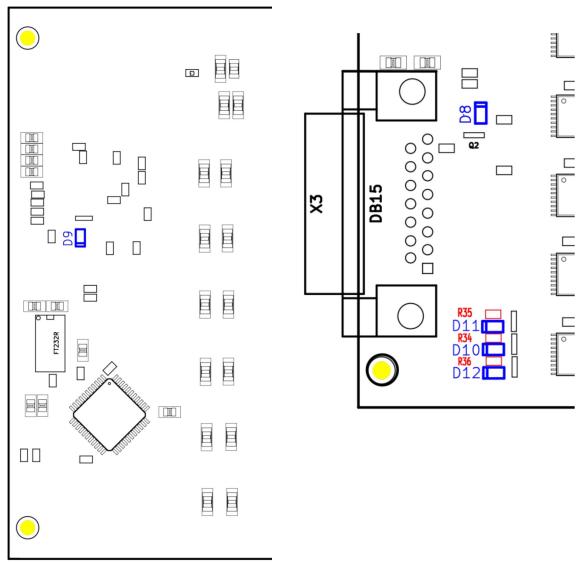


Abbildung 5: R64 V1.2 Bottom

Abbildung 6: R64 V1.2 Top

Variante	bestückte Bauelemente			
Slave 1	D9, D10, R34			
Slave 2	D8, D11, R35			
Slave_T1	D8, D12, R36			
Slave_T2	D9, D12, R36			
Bauelement	Wert			
Widerstand D9-D12 (blau)	0 Ohm			
Widerstand R34 – R36 (rot)	4,7 kOhm			

7 Master-Slave Verbindung

Die Master-Karte kommuniziert mit den Slaves über ein SPI-Interface am DSUB15-Steckverbinder X3. Jeder Slave stellt dabei ein 64bit langes Schieberegister dar(1Bit/Relais).

Der Zustand von DIN wird bei steigender SCK-Flanke eingelesen. Daten an DOUT erscheinen bei fallender SCK-Flanke.

Folgende Sequenz wird zum Schreiben/Lesen verwendet:

- 1. CS auf Low
- 2. Schieben der 64 bits
- 3. CS auf High / Relais werden geschalten

Tabelle 1: Pinbelegung X3

Pin	Signal	
1,9	GND	
2,10	+5V Versorgung	
6	/CS	ChipSelect Active low
7	SCK	SPI clock
8	/RESET	Active low
13	SlaveT1 /SlaveT2: DOUT	SPI Daten out
14	Slave1 / SlaveT2: DIN Slave2: DOUT	SPI Daten in / out
15	Slave2 / SlaveT1 DIN Slave1: DOUT	SPI Daten in / out

8 Anhang A: Relaisplan

Allgemein gilt:

Die Kanäle(C) sind von oben nach unten aufsteigend angeordnet.

Die Relais(K) sind von links nach rechts aufsteigend angeordnet.

Nachfolgend 2 Beispiele für die Master-Karte und Slave1-Karte:

1 Relaisplan Master:

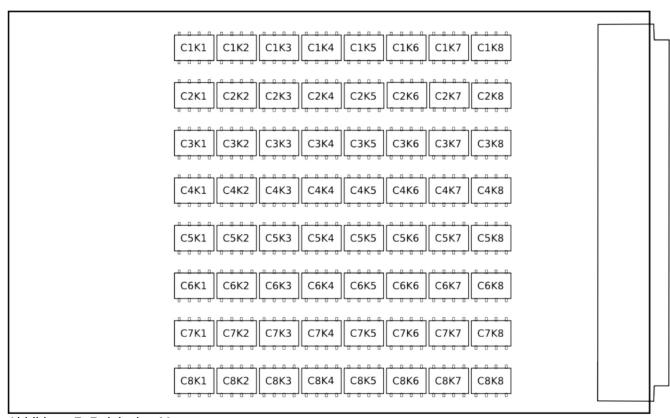


Abbildung 7: Relaisplan Master

2 Relaisplan Slave1

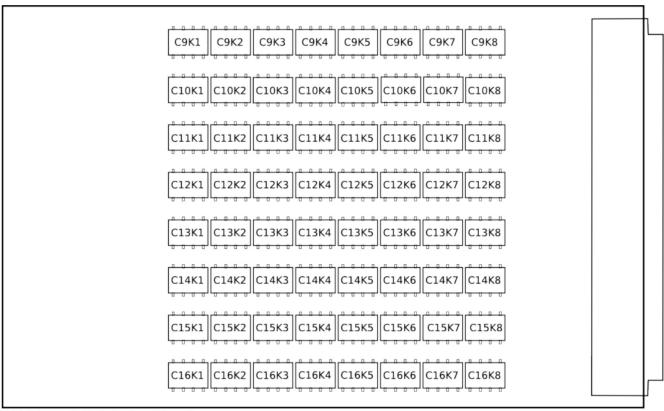


Abbildung 8: Relaisplan Slave1

9 Anhang B: Steckverbinder

1 X1

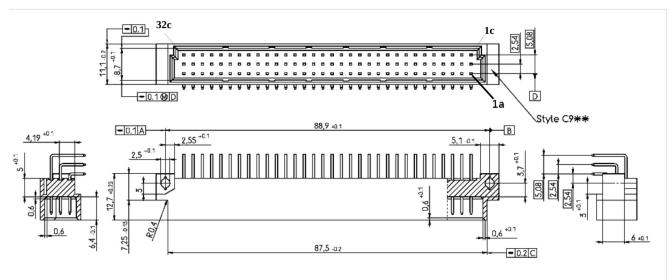


Abbildung 9: X1-Zeichnung

Kontaktbelegung:

Pin	Signal								
1a	C1K1	8c	C3K6	16b	C5K2	24a	C7K4	31c	C8K6
1b	C1K2	9a	C3K7	16c	C5K3	24b	C7K5	32a	C8K7
1c	C1K3	9b	C3K8	17a	C5K4	24c	C7K6	32b	C8K8
2a	C1K4	9c	C3	17b	C5K5	25a	C7K7	32c	C8
2b	C1K5	10a	+5V	17c	C5K6	25b	C7K8		
2c	C1K6	10b	+5V	18a	C5K7	25c	C7		
3a	C1K7	10c	+5V	18b	C5K8	26a	GND		
3b	C1K8	11a	+5V	18c	C5	26b	GND		
3c	C1	11b	+5V	19a	GND	26c	GND		
4a	C2K1	11c	+5V	19b	GND	27a	USBD+		
4b	C2K2	12a	C4K1	19c	GND	27b	USBD-		
4c	C2K3	12b	C4K2	20a	C6K1	27c	NC		
5a	C2K4	12c	C4K3	20b	C6K2	28a	GND		
5b	C2K5	13a	C4K4	20c	C6K3	28b	GND		
5c	C2K6	13b	C4K5	21a	C6K4	28c	GND		
6a	C2K7	13c	C4K6	21b	C6K5	29a	NC		
6b	C2K8	14a	C4K7	21c	C6K6	29b	NC		
6c	C2	14b	C4K8	22a	C6K7	29c	NC		
7a	C3K1	14c	C4	22b	C6K8	30a	C8K1		
7b	C3K2	15a	GND	22c	C6	30b	C8K2		
7c	C3K3	15b	GND	23a	C7K1	30c	C8K3		
8a	C3K4	15c	GND	23b	C7K2	31a	C8K4		
8b	C3K5	16a	C5K1	23c	C7K3	31b	C8K5		